1. Let \mathbb{R}^* denote the group of nonzero real numbers under multiplication. Let \mathbb{R}^+ denote the group of positive real numbers under multiplication. Show that \mathbb{R}^* is the internal direct product of \mathbb{R}^+ and the subgroup $\{+1, -1\}$.

2. In \mathbb{Z}, let $H = \langle 5 \rangle$ and $K = \langle 7 \rangle$. Prove that $\mathbb{Z} = H + K$. Is \mathbb{Z} the internal direct product of H and K?

3. If φ is a homomorphism from G to H and σ is a homomorphism from H to K, show that $\sigma \varphi$ is a homomorphism from G to K. How are $\ker \varphi$ and $\ker \sigma \varphi$ related? If φ and σ are onto and G is finite, describe $[\ker \sigma \varphi : \ker \varphi]$ in terms of $|H|$ and $|K|$.

4. Prove that $(A \oplus B)/(A \oplus \{e\}) \approx B$. (Note that since $A \oplus \{e\} \approx A$, this gives a concrete way of understanding how external direct products and factor groups behave in a way similar to multiplication and division of numbers.)

5. Suppose that k is a divisor of n. Prove that $\mathbb{Z}_n/\langle k \rangle \approx \mathbb{Z}_k$. (Hint: Use the first isomorphism theorem. You will need to take care to confirm that your map is a homomorphism.)

6. Suppose that φ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and $\ker \varphi = \{0, 10, 20\}$. If $\varphi(23) = 9$, determine all elements that map to 9.

7. Suppose that there is a homomorphism φ from \mathbb{Z}_{17} to a group G and that φ is not one-to-one. Determine φ.

8. How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_8? How many homomorphisms are there from \mathbb{Z}_{20} to (but not necessarily onto) \mathbb{Z}_8?

9. If φ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of φ.

10. Prove that the mapping $\varphi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ given by $(a, b) \mapsto a - b$ is a homomorphism. What is the kernel of φ? Describe the set $\varphi^{-1}(3)$.

11. If K is a subgroup of G and N is a normal subgroup of G, prove that $K/(K \cap N)$ is isomorphic to KN/N. (This is the Second Isomorphism Theorem.)