1. Show that every nonzero element of \(\mathbb{Z}_n \) is a unit or a zero-divisor.

2. Describe all zero-divisors and units of \(\mathbb{Z} \oplus \mathbb{Q} \oplus \mathbb{Z} \).

3. A ring element \(a \) is called an idempotent if \(a^2 = a \). Prove that the only idempotents in an integral domain are 0 and 1.

4. Suppose that \(a \) and \(b \) belong to an integral domain. If \(a^5 = b^5 \) and \(a^3 = b^3 \), show that \(a = b \).

5. Show that a finite commutative ring with no zero-divisors and at least two elements has a unity.

6. Give an example of an infinite integral domain that has characteristic 3.

7. Suppose that \(R \) is an integral domain in which \(20 \cdot 1 = 0 \) and \(12 \cdot 1 = 0 \). (Recall that \(n \cdot 1 \) means \(1 + 1 + \cdots + 1 \) with \(n \) terms.) What is the characteristic of \(R \)?

8. Let \(F \) be a field with characteristic 2 and more than two elements. Show that \((x + y)^3 \neq x^3 + y^3 \) for some \(x \) and \(y \) in \(F \).

9. Let \(F \) be a field of order 32. Show that the only subfields of \(F \) are \(F \) itself and \(\{0, 1\} \).

10. Let \(S = \{a + bi \mid a, b \in \mathbb{Z}, b \text{ is even}\} \). Show that \(S \) is a subring of \(\mathbb{Z}[i] \), but not an ideal of \(\mathbb{Z}[i] \).

11. If an ideal \(I \) of a ring \(R \) contains a unit, show that \(I = R \).

12. Prove that the only ideals of a field \(F \) are \(\{0\} \) and \(F \) itself.

13. Let \(R \) be a ring and let \(I \) be an ideal of \(R \). Prove that the factor ring \(R/I \) is commutative if and only if \(rs - sr \in I \) for all \(r \) and \(s \) in \(R \).