The metric topology of \mathbb{E}^n (and \mathbb{R}^n)

We can compute the distance between two points $p, q \in \mathbb{E}^n$ as $\|p - q\|$; this metric (way of measuring distance) lets us view \mathbb{E}^n as a metric space, because the following three properties hold:

1. $\|p - q\| \geq 0$, with equality only if $p = q$
 \textit{positive-definiteness}

2. $\|p - q\| = \|q - p\|$
 \textit{symmetry}

3. $\|p - r\| \leq \|p - q\| + \|q - r\|$
 \textit{the triangle inequality}

In a metric space allows us to define what it means for a set to be “open,” – a concept that helps us to more cleanly state and prove facts about shapes and continuous functions (which are the focus of the mathematical field of topology):

Given $x \in \mathbb{E}^n$ and $r > 0$, the \textbf{open ball} with center x and radius r is the set $D_r(x) = \{x' \in \mathbb{E}^n : \|x' - x\| < r\}$.

A subset $U \subset \mathbb{E}^n$ is called called a \textbf{neighborhood of x} if there exists an open ball around x that is fully contained in U, i.e., x is entirely surrounded by points of U, rather than being at its boundary. Formally:

$\exists r > 0$ for which $D_r(x) \subset U.$

A set $U \subset \mathbb{E}^n$ that is a neighborhood of every one of its points is called \textbf{open}. Formally, U is open if:

$\forall x \in U \exists r > 0$ for which $D_r(x) \subset U.$

To show that a subset $U \subset \mathbb{E}^n$ is open:

$\forall x \in U \exists r > 0$

1. Given an arbitrary $x \in U$, determine a positive value r that you claim will work.

2. For such x and r, prove that: If $\|x' - x\| < r$, then $x' \in U$.

A point x in an open set U
Techniques of proof

A few ways to prove that \(P \Rightarrow Q \) (i.e., “If \(P \), then \(Q \)”):

- **Direct**
 Assume \(P \) as a hypothesis, and use this to show that \(Q \) is true.

- **Contrapositive**
 Prove instead that \((\neg Q) \Rightarrow (\neg P)\).

- **Contradiction**
 Prove that \((P \text{ and } \neg Q)\) is impossible.

- **Definition**
 Prove that \((Q \text{ or } \neg P)\) is a true statement.

Except in very specific circumstances, the logic of an argument flows in one direction only; so to prove logical equivalence (“if and only if”), be prepared to make one argument for each direction. In other words, to prove that \(P \Leftrightarrow Q \), you could:

- Connect \(P \) to \(Q \) very carefully by a chain of logical equivalences. [not always possible]

 - or -
 Prove separately that \(P \Rightarrow Q \) and that \(Q \Rightarrow P \).

Basic set theory definitions and properties

Suppose that \(A \) and \(B \) are sets, and that \(V \) is a collection of sets. Then:

- **Subsets**
 \(A \subset B \) means \(x \in A \Rightarrow x \in B \)

- **Equality**
 \(A = B \) means \(x \in A \iff x \in B \)
 [or, equivalently, \(A \subset B \) and \(B \subset A \)]

- **Union**
 \(A \cup B = \{ x : x \in A \text{ or } x \in B \} \)
 \(\bigcup V = \{ x : \exists V \in V \text{ with } x \in V \} \)

- **Intersection**
 \(A \cap B = \{ x : x \in A \text{ and } x \in B \} \)
 \(\bigcap V = \{ x : x \in V \forall V \in V \} \)

- **Difference**
 \(A - B = \{ x : x \in A \text{ and } x \not\in B \} \)

- **Cartesian product**
 \(A \times B = \{(a, b) : a \in A \text{ and } b \in B \} \)

- **DeMorgan’s laws**
 \(X - (A \cup B) = (X - A) \cap (X - B) \)
 \(X - \bigcup_{V \in V} V = \bigcap_{V \in V} (X - V) \)

 \(X - (A \cap B) = (X - A) \cup (X - B) \)
 \(X - \bigcap_{V \in V} V = \bigcup_{V \in V} (X - V) \)

- **Emptiness**
 \(A \neq \emptyset \iff \exists a \in A \)

 \(A \) and \(B \) are called **disjoint** if \(A \cap B = \emptyset \)

 \(V \) is called a **disjoint collection** if \(A, B \in V \Rightarrow A = B \) or \(A \cap B = \emptyset \)