Functions and the derivative in Cartesian coordinates

Suppose that $F : \mathbb{E}^n \to \mathbb{E}^m$ is a smooth function (similarly for $F : \mathbb{E}^n \to \mathbb{R}^m$, etc.).

- Taking coordinates on the domain and range, we can represent the function F via m real-valued functions of n variables each. For example, suppose that $F : \mathbb{E}^2 \to \mathbb{E}^3$. Taking coordinates (u, v) on the domain and (x, y, z) on the range, each point in the domain corresponds to some pair of coordinates (u, v), and each point in the range corresponds to some triple of coordinates (x, y, z). The function F, then, assigns to each pair of domain coordinates three range coordinates, given by coordinate functions $x(u, v), y(u, v), z(u, v)$.

- Once a function is written in terms of coordinates, we can differentiate it with respect to one coordinate at a time (as in single-variable calculus), treating the other coordinates as constants. This operation is called partial differentiation; partial differentiation with respect to the variable v is denoted by $\frac{\partial}{\partial v}$. Higher-order partial derivatives can be computed iteratively, and for smooth functions, the order of differentiation does not matter. For example:

$$\frac{\partial}{\partial x}[5xy + \sin(x^3 + y)] = 5y + 3x^2 \cos(x^3 + y) \quad \text{and} \quad \frac{\partial}{\partial y}[5xy + \sin(x^3 + y)] = 5x + \cos(x^3 + y),$$

so

$$\frac{\partial}{\partial y \partial x}[5xy + \sin(x^3 + y)] = 5 - 3x^2 \sin(x^3 + y) = \frac{\partial}{\partial x \partial y}[5xy + \sin(x^3 + y)].$$

- If $p \in \mathbb{E}^n$, then DF_p is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$, and thus can be represented in coordinates by an $m \times n$ matrix.

What are its entries? From linear algebra, we know that the entry in the i^{th} row and j^{th} column is the coefficient of the i^{th} basis vector in the range when DF_p is evaluated on the j^{th} basis vector in the domain. But this is just the single-variable derivative of the i^{th} coordinate function in the range with respect to the j^{th} coordinate in the domain—i.e., a partial derivative! Thus, if $F : \mathbb{E}^n \to \mathbb{E}^m$ and we take coordinates (x_1, \ldots, x_n) in the domain and (y_1, \ldots, y_n) in the range, then DF is given in coordinates by the matrix

$$DF = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \cdots & \frac{\partial y_m}{\partial x_n}
\end{bmatrix}$$

If $p \in \mathbb{E}^n$, then we obtain a matrix for DF_p by evaluating each entry at p.

Fields and their derivatives in Cartesian coordinates

Suppose that \(f : \mathbb{E}^3 \to \mathbb{R} \) is a smooth scalar field and \(\vec{F} : \mathbb{E}^3 \to \mathbb{R}^3 \) is a smooth vector field.

- Using Cartesian coordinates, we can express the scalar field \(f \) simply as a function of three variables, e.g., \(f(x, y, z) = x^2 + y - z \); each \((x, y, z)\) corresponds to a point, and this expression tells us the scalar value to assign to that point in terms of its coordinates.

- The vector field \(\vec{F} \) can similarly be written in terms of three scalar fields \(F_1, F_2, F_3 \) as \(\vec{F} = F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k} \), or \(\{F_1, F_2, F_3\} \).
 For example, \(\vec{F}(x, y, z) = y \hat{i} + (\sin x) \hat{j} + x^2 \hat{k} \) tells us that at the point \(p = (\pi, 2, 3) \), \(\vec{F} \) gives the vector \(2\hat{i} + 0\hat{j} + 3\pi^2\hat{k} = \{2, 0, 3\pi^2\} \).

- The Laplacian of \(f \) is a the scalar field \(\Delta f \) is defined by \(\Delta f = \text{div}(\text{grad} f) \); if \(\Delta f \equiv 0 \), \(f \) is called harmonic.

- The operator “\text{del}”, \(\nabla = \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \) allows us to easily compute gradient, divergence, and curl in terms of partial derivatives:

 Gradient: \(\text{grad} f \) is the vector field \(\nabla f = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k} \)

 Divergence: \(\text{div} \vec{F} \) is the scalar field \(\nabla \cdot \vec{F} = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \cdot (F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \)

 Curl: \(\text{curl} \vec{F} \) is the vector field \(\nabla \times \vec{F} = \left(\frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \times (F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}) \)

 \[= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \hat{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x} \right) \hat{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \hat{k} \]

 Laplacian: \(\Delta f \) is the scalar field \(\nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \)

- In coordinates, the fact that \(\text{curl}(\nabla f) \equiv \vec{0} \) for a smooth scalar field \(f \) is a consequence of equality of mixed partial derivatives
 \(\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x} \), etc.\)